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When we talk to each other and to students about mathematics, how do we know we are 

communicating and making sense, and that we are not simply lonely voices talking in the dark? 

Communication by means of talk begins in the everyday world of children and adults. 

Communication in the everyday world can be difficult However mathematics at school and 

university level is not an everyday activity for most students and it is conceivable, if not likely, 

that students and their instructors are talking in parallel, or at cross-purposes, apparently 

communicating about the same topicbut in reality simply making pronouncements on their own 

understanding. von Glasersfeld (1990) has said: 

"If it is the case that such conceptual schemas - and indeed concepts in general - cannot be conveyed or 

transported from one to the other by words of the language, this raises the question of how language 

users acquire them. The only viable answer seems to be that they must abstract them from their own 

experience." (p. 35) 

" ... language is not a means of transporting conceptual structures from teacher to student, but rather 

a means of interacting that allows the teacher here and there to constrain and thus to guide the 

cognitive construction of the student" (p.37) 

In a 3rd year chaos course taught in 1993 to mathematics students at La Trobe University, 

students were expected and encouraged to make presentations of their attempts at problem 

solutions to the rest of the class. They were encouraged to write on an overhead projector and to 

talk aloud to their solution or attempted solution. These presentations formed an integral part of 

the course, because it is through them that student dialogue took a questioning, answering, and 

critical role. These were the times when awareness of a student's own actions become possible, 

both for the presenting student and other students in the class. In this sense the presentations both 

heightened a mathematical experience of the presenting student, and made that experience public. 

It is through student dialogue in these situations that mathematical knowledge, beyond individual 

knowledge, is co-constructed. 

One of the major reasons for our using student presentations is that it gives students an 

opportunity to give longer, more detailed explanations than they might otherwise give. In this 

regard Webb (1991) says: 

"The majority of the partial correlations between giving content-related explanations and achievement are 

positive and statistically significant. Even controlling for ability, giving content-related explanations was 



188 

positively related to achievement This suggests that giving elaborated explanations may be beneficial for 

achievement" (p. 372) 

We agree with von Glasersfeld that concepts are abstracted from personal experience, 

and it is almost a corollary of this point of view that the use of a phrase such as "the 

derivative is uro" will mean somewhat different things, conceptually, to different people, 

and will be highly dependent on their previous experience. For example, an experienced 

mathematician might read various things into the phrase ''the derivative is zero": that the 

degree one term in the Taylor series at that point is missing; that the tangent vector field at 

that point is horizontal; that if one knew a formula for the function then one could find an 

equation for the point at which the derivative is zero. It seems to me that, despite the use of a 

common language conceptual structures often do not fmd a common meeting place. 

COMMON LANGUAGE, DIFFERENT SCHEMAS 

Two students in the chaos course, Shaun and Vaughan, seem to be using a common 

language: they are discussing the successive iterates of an interval under a tent map 

T:[O,I]~[O,l] defmed by T(x) = 1 - 11 - 2xl. They use a common language for intervals and 

iterates, and draw the graph of the tent map in similar ways, and begin using it to illustrate 

graphical iteration. However, we believe that Shaun and Vaughan have quite different 

conceptions of how this iteration of an interval is taking place. Shaun appears to follow the 

end-points of the interval and "plug them" into the formula. Vaughan on the other hand sees 

the tent map, for the purposes of iterating the interval, as a doubling map. He even goes so 

far as to relate it to linear expansions treated earlier in the course. 

Shaun draws the graph of the tent map and tries to work out the image of the interval 

[0.4, 0.6] by indicating what's happening on the diagram. He apologises for not being able 

to draw the image well, and then resorts to applying the formula for f to the endpoints of the 

interval: 

Shaun: "That can be better worked out rather than the map by just looking at the fonnula which is just 

" 

He then attempted to find the image of this interval under the second iterate, but he did not 

draw the graph of the second iterate. 

Shaun: "Unfortunately you can't see it off the graph, but if you just, umm, plug the values in you'll 

find, I think, that's what you'll get." 

Vaughan present his solution to the image of [0,0.4] under the second iterate, and relates it 

to a linear map discussed in a previous class: 



Vaughan: "After two iterations we've got the interval 0 to 0.4, and using Jack's (the teacher) whatever 

it was from a few weeks ago, the .. anything from 0 to 0.4 under successive iterations for a while is 

going to get bigger because it's an example like we had before of the linear .... (waves hands)" 
, 

Shaun asks how Vaughan knows the interval is going to get bigger, and Vaughan essentially 

answers that the tent map is just multiplication by 2 on the left half of the interval: 

Shaun: ''What do you mean it's going to get bigger?" 

Vaughan: .. Well, any, any point between 0 and 0.4 under the next iteration will grow larger. Because, 

basically if you just look at that half (tent map on [0, 0.5]), that half of .. the thing, it's just one of those 

standard, ab ... thingies, so basically the point you've gone back to will actually double, so that, ab, 

interval's going to keep doubling until it hits, ... goes from 0 to 1. 

Shaun then asks why the interval will eventually iterate to [0, 1] and Vaughan gives a 

general, geometric, answer: 

Shaun: " How do you know it's going to get to 1 ?" 

V aughan: "Because when it, when ... , when the interval goes more than half of it it's going to start at 0, 

it's going to always start at 0, eventually it's going to go, well .. , in point of fact the next one's going to 

go from 0 to 0.8, but I mean if you just want to talk about it generally it's eventually going to go past 

halfway." 

Shaun: ''Won't it go from 1 to 0.8, the next one?" 

Vaughan: "No! The next one will go from 0 to 0.8. If you're doing an interval from 0 to 0.4, O's going 

to, ab, the itenwon's going to send 0 back to O. It'sjust going to expand the interval. Then once it gets 

past halfway it's going to, the next iteration's going to expand it to the whole of the interval of I." 

Shaun appeared to have difficulty seeing a geometric interpretation of iteration of the 

interval under the tent map, and relied instead on substituting the end-point values of the 

intervals into a formula. The fact that the formula for the successive iterates gets rapidly 

more complicated may have caused him cognitive difficulty. Vaughan, on the other hand, 

viewed the problem geometrically from the beginning, and realised that the only formula he 

needed to solve the problem was multiplication by 2. Vaughan seems to have interiorized 

the iterative behaviour of linear maps, but there is no evidence from this excerpt that Shaun 

has done likewise. Shaun' s relevant repeatable action scheme in this setting is putting 

numbers into a formula and computing. This is probably an interiorized and generalized 

action scheme for him: unfortunately it leads to a complicated tangle in trying to apply it 

directly, the way he did, to this problem. 
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It seems that despite their talking about a common problem, and using common 

language, Shaun and Vaughan are not communicating in a conceptual sense. How, wothout 

a shared experience, could they? 
i 

TELLING 

''Telling'' 'can be problematic for a committed constructivist teacher. How does one reconcile a 
belief that students actively build their mathematics through personal action and reflection with a 

lecture presentation in which a relatively expert mathematician ''tells'' about a part of 

mathematics? The reconciliation for us comes from our understanding of teaching and learning as 
evolutionary processes: there is nothing intrinsically wrong or right about telling, it simply creates 

certain environments which may be helpful or inimical to a student's understanding. A 

constructivist approach to mathematics learning should not be confused with discovery learning. 

For us, there is nothing in constructivist theory that says students can or will "discover" 
mathematics for themselves. Indeed, as Steffe has pointed out on numerous occasions. there is no 

necessity. nor even a likelihood. that mathematical activitY will develop out of more everyday 

activities. And Piaget (1972) has remarked: 
''When one thinks of the many centuries it took to arrive at our mathematics, it would be absurd to 

think that without the guidance (of teachers and parents) the child could arrive at a clear fOIDlUlation 

of the central questions on his own." (p. 21) 

We see a constructivist teacher's role as creating those problematic environments that promote 

mathematical aCtivity in students. These environments are necessarily built by a teacher out of 
their own mathematical experience and may, but do not necessarily, include careful observation of 

the actions and inter-personal dialogue of students in mathematics classes. Again we emphasise, 

each teacher builds their own constructivist understanding and so we, in the teaching team for the 

chaos course, will have individual understandings of the importance of "telling" at any particular 

moment. A critical issue however is that we become of those times we "steal" the possibility of 

mathematical action and reflection for a student by telling them an answer or procedure when they 

are still engaged in trying to solve a problem, and take steps to avoid such "cognitive theft". A 

basic problem of constructivist mathematics teaching is the following: 

If a teacher pays little or no heed to students' ways of acting mathematically then students 

won't engage with the teacher's concerns. On the other hand, students are initially unaware of the 

nature of their action schemes - helping to make them aware is partly a problem of social 

discourse. This is the problem of constructively reconciling individual and cultural ways of acting 

and knowiitg. A really difficult issue for us is: just when is it that well-intentioned critical 



comments from a teacher constitute an infringement on the thought processes and clarifications of 

a student? Webb (1991) remarks that: 

" ... being timely and understandable does not necessarily ~sure that explanations will be beneficial to 
I 

the recipient" (p. 369). 

A delicate example of this dilemma occurs in the following interaction. A student. Jim, is 

explaining to the class his solution to the problem: ''Guess the general shape of the graph of rn 
(the nth iterate off) when n gets large, where f:[0,1]~[0,1] is defmed by f(x) = x(1-x)." He draws 

the graph of the function f and the identity function on the interval [0, ~ ], and says that f(x) 

increases from 0 to * . He then draws what appears to be the same graph, and says "as x increases 

from 0 to ~ , f2(x) increases from 0 to * ." 
Anna (another student): " Are you sure?" 

Jim:"Am I surer' 

Anna: " f(x) as x goes from 0 .... (inaudible)" 

Jim: " Oh, sorry! And then ... " 

Jim then writes "and then back to 0." 

Anna: " If you put one, one second to f squared it gives you ... ;6 not ~. So you just draw a graph f, ... 

and it's not f squared, it's just f." 

Jim: "The first one?" 

Anna: ''No. The second one." 

Jim: "Oh, right. I see what you mean." 

Anna: "As f(x) increases from .... " 

Jim: " Oh, yeah, that's right. Oh yeah, oh sorry. So that should re:l there and that should be ! ." 
Jim draws a graph increasing from 0 at x = 0, to * at x = * and then decreasing to 0 at x = 

~. This is not the graph of the second iterate of f. 

Teacher: "As x increases from 0 to !, f(x) increases from 0 to ~ . Now if f(x) increases from 0 to ~ , f of 

x (sic) increases from 0 to f of ~ . 

J. "Y ah b . 'that fi( 1 ) 1 "" un: e, utlSn t 16 ... a 16. 

Teacher: "Whatever, yeah. But it's not going back. 

J. "1. 1. " 
un: 2" times 4' times ... 
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Teacher: "It just comes back. t 1bere (pointing to the point at which his curve attains a maximum) and 

some other value, less than ~ (pointing to the maximum value off). 

Jim: " I~ . No, that's not ~ there." ;' 

He erases the maximum value Of! on the vertical axis of his graph of f2. 

A further discussion ensues with another teacher in the class as to the range of the 

variable on the horizontal axis of the graph of f2. The issue, as to whether there is agreement 

that this is or is not a graph of the second iterate of f, is not resolved. 

Apart from the important issue of two people - Jim and the teacher - apparently talking at but 
not listening to, each other, this interaction raises the point of whether the teacher's telling at that 

point was beneficial to the student We believe, in retrospect, that it was not and that a continuing 
dialogue between students may have resolved the issue for Jim. 

DEFINITIONS 

The concepts we discuss here are sophisticated and relatively far removed from everyday 

experience. At this level of mathematics, defmitions are critically important because they are 

organizing principles, for the teacher, for a variety of phenomena, and because they potentially 

distinguish, in a literal sense, quite subtly different examples. On the other hand they create a 

serious problem for students, because they are often used by teachers as the basis for the 

formation of concept images when a student might not have the appropriate examples to abstract 

from. Generally, the tenor of statements in the literature concerning defmitions has emphasised 

their negative aspect. For example, Skemp (1982) and Steffe (1990) say, respectively: 

"Concepts of a higher order than those which a person already has ~ot be communicated '" by a definition, 

but only by arranging .... to encounter a suitable collection of examples." (p. 32) 

"Providing a definition can be orienting but using it can be very problematic especially if it has not been the 

result of experiential abstraction." (p. lOO) 

However Vinner (1991) points out the need for defmitions and their constructively constraining 
role in advanced mathematics: 

.. In technical contexts, definitions might have extremely important roles. Not only that they help forming the 

concept image but they very often have a crucial role in cognitive tasks. They have the potential of saving you 

from many ttaps which are set by the concept image, .. ' Thus, technical contexts impose on students some 

thought habits which are totally different from those typical to everyday life contexts," (p. 69) 



So whilst students may not, and perhaps cannot, learn concept images from defmitions, they 

nevertheless need defmitions in an essential way in advanced mathematical settings. At least one 

of the major concepts in chaos, presented to the students through a defInition, has engendered just 

those difficulties alluded to by Skemp and Steffe. The idefmition of sensitive dependence given in 

the lecture notes is as follows: 

A map f :[0,1]~ [0,1] has sensitive dependence on initial conditions if the following holds for some 8> 0. For 

. each x e [0, 1] and for each open interval I !:;[0,1] containing x, there is a y contained in I and an integer n 

such that IfIl(x) - fIl(y)1 ~ 8. 

Both of these defmitions, which appear very similar to students, were presented in the lecture 

notes in class, and in that same session students were set problems that involved these defmitions. 

In the excerpt below a student Paul has asked the teacher, in a small group, about the meaning 

of the term "sensitive dependence. The teacher has heard the conversation on the topic in the 

group and asks Paul to address the whole class: 

Teacher: "Paul has a question" 

Paul (addressing the class): "What does sensitive dependence mean? How do you decide if something has 

sensitive dependence?" 
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Maria: " ..... if the error's getting bigger you have sensitive dependence, if it's still the same .. getting smaller .. If 

it's still the same .... 

Anna: .. Sensitive dependence is if you make some small mistake at the beginning, at the end it's just not at all 

what you want it to be." 

Paul: " So what's that in terms of the, the uhm.. (he then looks back through the lecture notes). 

Paul's diffIculty seems to be that he has neither a concept image nor can he comprehend the 

defmition. Maria and Anna on the other hand appear to have their own concept images for 

sensitive dependence, but neither of them express these images in a way that Paul can relate to the 

written defmition. 
DISCUSSION 

Mathematical knowledge that transcends an individual's knowledge is co-constructed in 

particular contextual settings. Dialogue, in the form of speech, is a basic agent in this process of 

co-construction of meaning. There are numerous indications over the past decade that social 

interaction and peer learning play a major role in the learning of mathematics for most students. 

(Webb, 1982, 1991; Phelps and Damon, 1989; Yackel, Cobb and Wood, 1991; for example). 

Leder (1993) points out that: 
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"Social intemctions are ••• critical for knowledge construction. Making discussion about mathematics learning 

commonplace and requiring desaiptions and defence - if applicable - of one's schemes and methods should not 

only make learners more reflective but more confident" (p. 12) 
i 

It is a basic tenet of constructivist theory and classroom practice that, to use von Glasersfeld's 

words, " .. language is not a means of transporting conceptual structures from teacher to student. ..... 

Yet communication in mathematics classrooms is increasingly being recognised as of major 

importance. The language issues of verbal communication between students and teachers, teacher 

telling, and written definitions, are paramount in mathematics classroom communication. These 

issues have been examined here through examples in tertiary mathematics to elucidate the 

difficulties inherent in verbal and written communication even in advanced mathematics classes. 

Language, as von Glasersfeldsays is a means of interacting: but, we must ask, interacting about 

what? As participants in a communicative activity we make inferences about what is meant by 

cettain words and phrases - the "aboutness" of a dialogue. This can be difficult enough in 

everyday affairs: in mathematics classrooms it can be extraordinarily difficult, and we must ask to 

what extent students and teachers are lonely voices talking in the dark? If we believe we have 

communicated mathematically, by what means can we test that belief! 
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